MATHEMATICS

TOPIC: TRIGONOMETRY GRADE 10

CAPS ALIGNED

TRIGONOMETRY - DEFINITIONS (RIGHT TRIANGLES)

www.nbmmaths.co.za

TRIGONOMETRY- Grade 10

1. Trigonometry

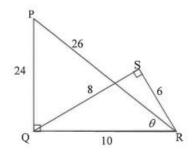
- 1. Define the trigonometric ratios $\sin \theta$, $\cos \theta$ and $\tan \theta$ using the right angled triangle
- 2. Extend the definitions of $\sin \theta$, $\cos \theta$ and $\tan \theta$ for $0^{\circ} \le \theta \le 360^{\circ}$
- 3. Define the reciprocal of the trigonometric ratios $\csc \theta$, $\sec \theta$ and $\cot \theta$, using the right-angled triangles (these three reciprocals should be examined in Grade 10 only)
- Derive values of the trigonometric ratios for the special cases (without using a calculator) θ
 ∈ {0°, 30°, 45°, 60°, 90°}
- 5. Solve two-dimensional problems involving right-angled triangles (See Term 3)
- Solve simple trigonometric equations for angles between 0° and 90°
- 7. Use a diagram to determine the numerical values of ratios for angles from 0° to 360°

2. Trigonometry (2D)

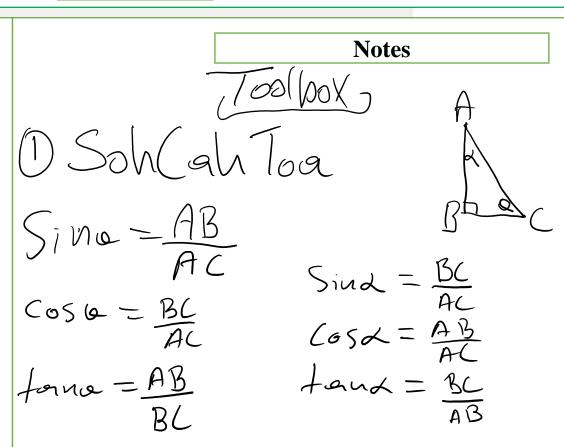
- Solve two-dimensional problems involving right- angled triangles
- Problems in two dimensions

3. Examination Guideline

- 1. The reciprocal ratios cosec θ , sec θ and cot θ will be explicitly tested in all aspects: definitions, function values and equations.
- While the focus of trigonometric graphs is on the relationships, the characteristics of the graphs will also be examined.



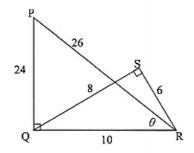
Trigonometry (Definitions) - GRADE 10 Exercises - A


DBE/NOVEMBER 2015

QUESTION 4

 Δ PQR and Δ SQR are right-angled triangles as shown in the diagram below. PR = 26, PQ = 24, QS = 8, SR = 6, QR = 10 and $\hat{P}RQ = \theta$.

- 4.1 Refer to the diagram above and, WITHOUT using a calculator, write down the value of:
 - 4.1.1 tan P
 - 4.1.2 $\sin SQR$
 - $4.1.3 \quad \cos\theta$
 - 4.1.4 secSÂQ
- 4.2 WITHOUT using a calculator, determine the value of $\frac{\cot \theta}{\csc \hat{QRS}}$

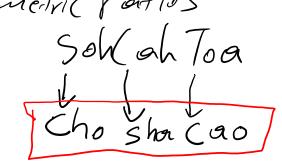


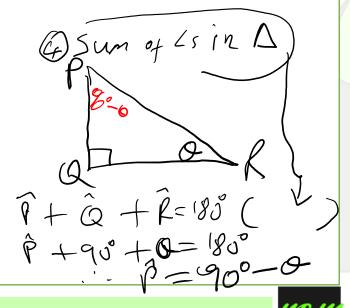
Trigonometry (Definitions) - GRADE 10 Exercises - A

Exercise A

QUESTION 4

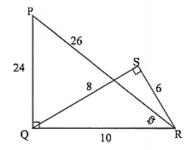
ΔPQR and ΔSQR are right-angled triangles as shown in the diagram below. PR = 26, PQ = 24, QS = 8, SR = 6, QR = 10 and $PRQ = \theta$.


- Refer to the diagram above and, WITHOUT using a calculator, write down the value of:
 - tan P 4.1.1
 - 4.1.2 sin SQR
 - 4.1.3 $\cos\theta$
 - 4.1.4 secSŔQ
- WITHOUT using a calculator, determine the value of


Notes

Dheciprocal of trigonomedric rootios Coseco = Joseph Sollah Toa

$$S_{e}(o = \frac{1}{\cos o}$$



Trigonometry (Definitions) - GRADE 10 Exercises - A

Exercise A

QUESTION 4

 Δ PQR and Δ SQR are right-angled triangles as shown in the diagram below. PR = 26, PQ = 24, QS = 8, SR = 6, QR = 10 and PRQ = θ .

- 4.1 Refer to the diagram above and, WITHOUT using a calculator, write down the value of:
 - 4.1.1 tan P
 - 4.1.2 sin SQR
 - $4.1.3 \quad \cos\theta$
 - 4.1.4 secSÂQ
- 4.2 WITHOUT using a calculator, determine the value of $\frac{\cot \theta}{\csc QRS}$

Solutions

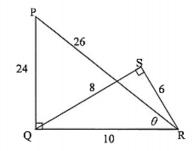
$$\frac{QY}{4\cdot 1\cdot 1} = \frac{10}{10} = \frac{5}{12}$$

$$4.1.2 = \frac{10}{10} = \frac{3}{12}$$

$$4.1.2 = \frac{6}{10} = \frac{3}{5}$$

$$4.1.4 = \frac{5}{10} = \frac{3}{5}$$

$$4.1.4 = \frac{10}{5} = \frac{3}{5}$$


$$4.1.4 = \frac{10}{5} = \frac{3}{5}$$

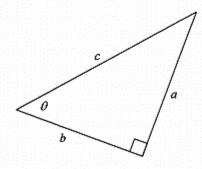
<u>Trigonometry (Definitions) - GRADE 10</u> <u>Exercises - A</u>

Exercise A

QUESTION 4

 Δ PQR and Δ SQR are right-angled triangles as shown in the diagram below. PR = 26, PQ = 24, QS = 8, SR = 6, QR = 10 and PRQ = θ .

- 4.1 Refer to the diagram above and, WITHOUT using a calculator, write down the value of:
 - 4.1.1 tan P
 - 4.1.2 sin SQR
 - $4.1.3 \quad \cos\theta$
 - 4.1.4 secSÂQ
- 4.2 WITHOUT using a calculator, determine the value of $\frac{\cot \theta}{\csc \hat{QRS}}$


$$= \frac{10}{24} \times \frac{8}{10} \times \frac{10}{24} \times \frac{1$$

Trigonometry (Definitions) - GRADE 10 Exercises - B

Exercise B

QUESTION 4

4.1 A right-angled triangle has sides a, b and c and the angle θ , as shown below.

- 4.1.1 Write the following in terms of a, b and c:
 - (a) $\cos\theta$
 - (b) $tan\theta$
 - (c) $\sin(90^{\circ}-\theta)$
- 4.1.2 If it is given that a=5 and $\theta=50^{\circ}$, calculate the numerical value of b.

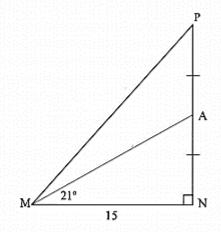
$$4.1.(a) (oso = \frac{b}{c})$$

$$(b) +ano = \frac{a}{b}$$

$$(C) \sin(95-0) = \frac{b}{c}$$

$$4.1. 2 +ano = \frac{a}{b}$$

$$\frac{b+faxso^{2}}{+axso} + \frac{5}{b}$$


$$\frac{b+faxso^{2}}{+axso} = \frac{5}{b}$$

<u>Trigonometry (Definitions) - GRADE 10</u> <u>Exercises - B</u>

Exercise B

QUESTION 5

5.1 In the sketch below, ΔMNP is drawn having a right angle at N and MN = 15 units.
A is the midpoint of PN and AMN = 21°.

Calculate:

5.1.1 AN

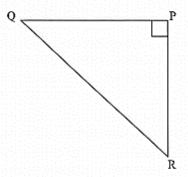
5.1.2 PMN

5.1.3 MP

5.1. I In DMAN

152 tay 21° = AN

5.1.3 In DMNP Cos 37,52° = 15 Mpx (os 37,52° = 15 Cos 37,52° (os 37,52°


$$\frac{15}{MN} = \frac{15}{400} \left(\frac{1152}{15} \right) = 37.52^{\circ}$$

Trigonometry (Definitions) - GRADE 10 Exercises - C

Exercise C

QUESTION 3

In the diagram below, $\triangle QPR$ is a right-angled triangle with $QPR = 90^{\circ}$.

- Use the sketch to determine the ratio of tan(90°-R). 3.1.1
- Write down the trigonometric ratio that is equal to QR 3.1.2

$$e^{i\pi}+1=0$$

Euler's Identity

SOURCES

- 1. FET CAPS DOCUMENT
- 2. GRADE 10 EXAMINATION GUIDELINES
- 3. GRADE 10 DBE/NOVEMBER 2015 -2018

